The Sun & The Earth: Crash Course Big History #3

Posted by admin on


In which John Green, Hank Green, and Emily Graslie teach you about our Sun, and the formation of the planets. Were going to focus on the formation and development of the Earth, because thats where people live. Youll learn about the Solar nebula, the birth of the sun, the formation of planets, and how the Earth and the rest of the solar system developed over the last 4.567 billion years.

Transcript Provided by YouTube:

00:00
Hi, Im John Green, this is Crash Course Big History. Today were gonna be talking about
00:03
the formation of the solar system, approximately 4.567 billion years ago. Four, five, six,
00:10
seven.. Could that possibly be a coincidence? Yes.
00:14
So if you werent asleep during like, every minute of grade school, youre probably familiar
00:18
with the basic layout of the solar system and the eight formerly nine planets.
00:22
What you may not know is how the planets fit between the stars, and life as the linchpin of rising complexity.
00:29
Mr. Green, Mr. Green! What about Pluto?
00:31
Oh, Me From the Past! I know people like to root for the underdog, particularly when the
00:35
underdog shares a name with Mickey Mouses dog. Off topic, but how come Mickey Mouse
00:40
has a dog who is a dog, and also a friend, Goofy, who is a dog? But just remember that
00:45
Pluto also shares a name with the Roman god of the underworld, who was very unlikable.
00:50
But regardless, the word planet is a man-made classification for a natural phenomenon. We
00:55
use it because it makes it easier to do science.
00:58
Pluto hasnt cleared the rocks within its neighborhood orbit, like planets usually do,
01:02
and theres even a dwarf planet on the edge of our solar system, Eris, thats bigger
01:06
than Pluto, and there are hundreds of others that are comparable to Pluto. The nature of
01:10
the universe has not changed, its just that we learned that Pluto was not acting like
01:15
a planet, so can we please just drop the Pluto thing!?
01:20
[Theme Music]
01:29
So were now moving from the scale of galaxies, which involve millions of light years, to
01:33
a neighborhood thats only a few light hours from the sun, to Neptune the farthest planet
01:38
or at most, a light year or two to the distant Oort cloud of billions of comets held by the gravity of our sun.
01:45
So last episode we talked about how the stars are like our great-great-great-many-many-times-over
01:49
grandparents. Well, our sun actually had stars as its parents, too. Its most likely a second
01:55
generation star, which means that the sun was formed from the wreckage of previous dead
01:58
stars, and that it contains elements other than just hydrogen and helium heavier elements
02:03
that are forged in the bellies of stars and some of which are, like, flung out by supernovae.
02:07
When our star formed, its immense gravitational pull sucked in 99.99% of all the matter in
02:14
the solar system, so in this case we are all the 0.01%. But essentially, the rest of the
02:19
solar system is made up of the debris, like the crumbs, the dregs in the bottom of your coffee cup.
02:25
Our sun formed over the course of about 100,000 years in whats called a solar nebula, which
02:30
is like a fiery cradle of wisps of dust and gas. Then the solar nebula began to compress
02:35
into a star, probably triggered by a nearby supernova that also, usefully, peppered the
02:40
solar system with even more heavy elements. And then, as the sun slurped up like almost
02:44
all of the matter of the solar system, pressure made the core of the sun heat up and it came to life.
02:49
The usual fusion of hydrogen and helium began to happen and continues to happen, which is
02:54
nice because otherwise the Earth would be extremely cold, and- and also very dead. So
02:59
how do we know all of this is true? Well, lets talk to Emily, from The Brain Scoop.
03:03
Well, a good piece of evidence is the construction site rubble from that time. Meteorites form
03:08
a sort of fossil record. Meteorites fall to Earth and some of them are primitive clumps
03:12
of nebular dust. Careful investigation reveals them to be around 4.568 billion years old.
03:18
The point is there can only be two environments where Iron-60 came from. One is inside of
03:23
a very old giant red star, and the other is within a supernova. Elderly red giants move
03:27
away from star forming regions in the galaxy; chances are, the sun wasnt formed near one
03:32
of those. So its much more likely that our suns formation was triggered by a supernova blast.
03:37
So in the early days, the heat from the sun blasted lots of gassy materials away from
03:42
the inner regions of the solar system, encompassing Mercury, Venus, Earth, and Mars, further out
03:47
in the vicinity of where Jupiter is now; it was cold enough for volatile gasses to hang
03:51
around and even become liquids or solids.
03:54
Thats why the inner planets like us are rocky, and the outer planets, Jupiter, Saturn, Uranus,
03:59
and Neptune are all these humongous gas giants. So what happened to the remaining 0.01% of
04:05
our solar system, and what does this have to do with the rise of complexity? Well, the
04:10
dust floating around the baby solar system wasnt just elements; like, heating in the
04:15
stellar nebula allowed this dust to sometimes form more complex configurations of elements,
04:20
like, for one thing, around 60 different kinds of minerals.
04:23
So then the dust began to stick together. Why do I have balloons, by the way? Well,
04:26
obviously Im going to tell you shortly.
04:28
So you may have noticed that if you rub a balloon onto your head for long enough, it
04:31
will stick. Thats because of electrostatic forces, precisely the same forces that allowed
04:35
the dust in the solar system to gently collide and stick together.
04:39
And then as those clumps of dust got bigger and bigger, the collisions ceased to be so
04:43
gentle. So within 100,000 years there were many objects of up to 10 kilometers in diameter
04:48
in the solar system and the force and heat of those violent collisions allowed the formation
04:53
of still more celestial bodies.
04:54
Objects continued to collide, the larger objects sucking in the smaller ones with their gravitational
04:59
nets, and then the largest in each orbit began bulldozing its way through the remaining material.
05:05
So after about a million years, the solar system consisted of a few dozen or so protoplanets.
05:10
They were roughly between the size of Mars and our moon, and then, over the next 10 to
05:15
100 million years, the game of pool continued, each collision being something terrifying
05:20
to behold, until we wound up with the eight massive planets we are familiar with today.
05:25
But, of course, theres more than just planets in our solar system. Theres an asteroid-belt
05:28
between Mars and Jupiter, for instance, which may be a failed planet, messed-up by Jupiters
05:33
gigantic gravitational pull. And then on the edge of the solar system, theres the Kuiper-belt,
05:37
a region of planetary shrapnel, like poor old Pluto, and even further out, in the boonies,
05:43
there is the Oort cloud its like this huge borderland teaming with billions of comets,
05:47
but its still within the suns gravitational pull, and the Oort cloud is a light year away.
05:53
Thats how massive our sun is, and its a pretty modest-sized star.
05:57
So this was a pretty intense time, in terms of energy transference like, all those
06:01
protoplanets smashing together converted huge amounts of kinetic energy to heat. In fact,
06:06
it was so much heat that when combined with the heat put off by radioactive materials
06:11
in the early solar system, the Earth was a molten ball of lava. Basically, the entire
06:16
planet was as hot as Houston, Texas. Whats that? Apparently it was much hotter than Houston, Texas.
06:23
Anyway, the Earth underwent a process of differentiation, whereby heavy elements sank to the
06:28
center, and many lighter elements floated to the surface. A lot of the metallic elements, like iron
06:33
and nickel sank through the hot sludge to the core, where they still are, and the lighter
06:38
silicates floated upward, forming the Earths mantle, a region about 3,000 kilometers thick.
06:45
The even lighter silicates floated to the surface, where they eventually cooled into
06:48
the Earths crust, about 35 kilometers thick in some places, and at the bottom of the deepest
06:53
oceans, about as thin as 7 kilometers.
06:56
You can think of the crust as like the thin layer of skin that forms on a bowl of hot
07:00
clam chowder, and you wouldnt be far from the truth. By the way, I could use some delicious
07:05
geological clam chowder right now, just like my mom used to make, but with more nickel.
07:09
The lightest materials of all, including gases like hydrogen, helium, methane, water vapor,
07:15
nitrogen, ammonia, hydrogen sulfide they bubbled to the surface, and were kinda belched
07:20
out of volcanoes, to form the early atmosphere of the Earth, the steam off the soup. And
07:26
then even more water vapor was brought in by comets falling to Earth, which we appreciate,
07:30
comets, but even though we do have a water shortage, we dont need you to come back.
07:35
Much of the methane and the hydrogen sulfide in the early atmosphere was converted into
07:38
carbon dioxide, which turned the sky into like a terrifying red, rather than our friendly blue of today.
07:44
So basically, youve got an Earth with a red sky, volcanoes that are thousands of feet
07:49
high, a black, barren rocky surface, the foul smell of sulfur everywhere, scolding hot steam,
07:55
constant collisions of fire and brimstone from above, occasionally splitting the crust
08:00
open and creating entire oceans of lava. Thats why we call this period in Earths history
08:05
The Hadean Era, after Hades, the Greek god of the underworld.
08:09
But a couple of nice things about this crazy, terrifying ball of fire: one, we werent there,
08:13
so its not bothering us. Two, all of this intense heat and pressure allowed mineral
08:18
combinations to increase dramatically. In fact, there were a whopping 1,500 different
08:23
combinations and that would only increase as plate tectonics and life got involved.
08:28
So during this terrible toddler phase for the Earth, a Mars-size object dubbed Theia
08:32
collided with the newly-formed Earth in a vigorous kind of body-check, or I guess more of a planet-check.
08:38
This knocked out a huge chunk of the Earths materials, and then, over time, those materials
08:42
accreted into, you guessed it, the moon. The moon, of course, is best-known today for inspiring
08:47
the moons over-my-hammy sandwich at Dennys, but it also inspired the space race and millions
08:52
of poems and paintings and it also created tides. But putting aside the tides, which
08:57
are admittedly a pretty big deal, without the moon, what would wolves howl at in all of those T-shirts?
09:02
All right, so as the Earth cooled, the water vapor that had accumulated in the atmosphere
09:06
fell in torrential rains. Like, downpours that lasted millions of years. It was like
09:12
Seattle, but instead of like, coffee and grunge music, there was just ammonia. These downpours
09:17
created the first oceans, like as the Earths surface cooled below 100 degrees Celsius, water
09:22
vapor was able to stay in liquid form and somewhere between 3.8 and 4 billion years ago, we had oceans.
09:29
Lets talk about food again! This time, though, instead of Earth-chowder, lets imagine the
09:33
Earth as an egg. The crust is as thin as the eggshell. Its also brittle and fractured
09:40
into segments called plates. Essentially, these plates float on top of squishy, goopy
09:44
rocks that are close to their melting point. As a result, the surface of the Earth has
09:49
a history of its own, including the creation of mountains, the explosion of volcanoes,
09:53
the forging of mighty super-continents like Rodinia and Pangaea.
09:57
Plate tectonics affects everything from the movement of continents to the distribution
10:01
and evolution of species, and is one of the most vital principles of modern geology. Its
10:05
also responsible for less fun things, like massive earthquakes and super volcanic eruptions
10:09
that have caused the deaths and even total extinction of millions of species.
10:13
Finally, the point should be raised that of all the possible scenarios that might kill
10:16
off the human race provided we dont kill off ourselves a super volcanic eruption
10:20
is among the foremost of them. In fact, on the scale of millions of years, a devastating
10:25
eruption is almost guaranteed to happen. And unlike an asteroid, one cant go all Bruce
10:29
Willis and blow up a super eruption with a nuke. If were still around, itll be interesting to see how we cope.
10:35
Throughout the birth of the Sun and the origins of the Earth, there was the chance formation
10:39
of Goldilocks conditions for life.
10:42
Like with the porridge and beds that a fairy-tale sociopathic blonde pilfered from a baby bear
10:46
in a break-and-enter job, the conditions for life on Earth were just right. This includes
10:51
the placement of the planet relative to the Sun. The right chemicals were present on Earth
10:55
to produce the first building blocks for life more on that next time.
10:59
Even plate tectonics were hugely important. First, they suck biotic waste dead things,
11:04
excrement underground instead of remaining on the surface. If not for plate tectonics,
11:08
wed be more more-or-less swimming in our own you-know-what. Over millions of years,
11:12
this biotic waste could be transformed into coal, or even diamonds.
11:15
Plate tectonics we turn your poo into diamonds.
11:19
And if it wasnt for oceans and plate tectonics, theres a good chance that wed have the same
11:23
runaway greenhouse effect that Venus has where the surface is hot enough to melt lead.
11:27
Plate tectonics were also crucial to human history. The gigantic land-mass of Afro-Eurasia
11:32
made trade networks possible, which facilitated the exchange of knowledge and technologies,
11:37
along with sharing diseases to gradually build immunities something that would be grave
11:42
news for the isolated inhabitants of North and South America.
11:45
The distribution of copper, iron, silver and gold influenced the growth and prosperity
11:49
of countless societies, even the distribution of coal-beds in Wales was a major ingredient
11:54
for the industrial revolution kicking off in Great Britain.
11:57
All these things, formed within the slimmest of margins of probability, were Goldilocks
12:01
conditions for the rise of complexity in the later story the sustenance of life, the
12:06
distribution of resources, and even the coal needed for the industrial revolution, which
12:10
exploded into the tremendous rise of complexity in modern times.
12:14
Its a transformation that continues to this very day.
12:18
So speaking of Goldilocks conditions, knowing about the formation of our solar system, and
12:22
the conditions on Earth that were necessary for life, is crucial to thinking about the
12:26
possibility of life elsewhere. The first so-called exoplanet was discovered by Swiss astronomers
12:31
in 1995, and in 2002 alone, 31 new exoplanets were discovered by independent astronomers.
12:38
NASA has taken this several steps further. In 2009 they launched the Kepler probe
12:43
to look at about 150,000 solar systems in the nearby galaxy.
12:47
As of now, theyve found hundreds and hundreds of confirmed planets with thousands more potential
12:52
candidates. And estimates are that in the entire Milky Way galaxy, there could be as
12:56
many as 40 billion Earth-sized planets orbiting their stars in the Goldilocks zones for life,
13:02
and thats just in our galaxy! There are hundreds of billions of galaxies in the universe.
13:07
Now Im not gonna tell you that creating life is as easy as shooting fish in a barrel, but
13:11
if you put a hundred trillion bullets in that barrel, you are bound to hit a fish. But given
13:16
the vast amount of space between solar systems and the fraction of time in which life to
13:21
speak nothing of the sliver of time so-called intelligent life has existed on our planet,
13:26
we may never encounter other life forms.
13:28
But I find it tremendously exciting, as well as kind of comforting, knowing that there
13:32
may well be other forms of life out there, even if we never run into them, from microbes
13:38
to multi-celled organisms, like, you knowus! Maybe theyre as astonished by their existence
13:44
as we are by ours, and thinking about that, one begins to feel a little bit better about
13:50
our tiny role in the cosmic play. We may never meet, but were comrades in the strange phenomenon
13:55
of rising complexity in the universe. More on that next time. Ill see you then.


This post was previously published on YouTube.

Photo credit: Screenshot from video.

The post The Sun & The Earth: Crash Course Big History #3 appeared first on The Good Men Project.